d^2=3520

Simple and best practice solution for d^2=3520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for d^2=3520 equation:



d^2=3520
We move all terms to the left:
d^2-(3520)=0
a = 1; b = 0; c = -3520;
Δ = b2-4ac
Δ = 02-4·1·(-3520)
Δ = 14080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14080}=\sqrt{256*55}=\sqrt{256}*\sqrt{55}=16\sqrt{55}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{55}}{2*1}=\frac{0-16\sqrt{55}}{2} =-\frac{16\sqrt{55}}{2} =-8\sqrt{55} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{55}}{2*1}=\frac{0+16\sqrt{55}}{2} =\frac{16\sqrt{55}}{2} =8\sqrt{55} $

See similar equations:

| 12.2+w/7=-5.3 | | 480t=660(t-1/12) | | 14=4x+4x | | -8y-2-5y=23 | | 10(z-86)=50 | | 24-4h=16 | | 3y=-7=1 | | 35=9u-2u | | 5(x+8)-7x=-(2x-40) | | 3x+11+x-64=180 | | 5-4x=-2+3x | | 8+.75m=6+1.25 | | 3x+11+x-64=90 | | T+10=8t-18 | | –6w+8=–4w | | 3/2a=7(a+11) | | 6a+17=2a-13 | | 7(p+6)=77 | | k+45=32 | | 20+8u=12u | | 3x-x-440=0 | | b/6=13 | | -3.5+n=6.7 | | x+35=110 | | 3(k+12)=54 | | q+384=882 | | 2y+12=8y | | 25(p+37)=2,997 | | 2y−5=5 | | -7.8(x+6.5)=-25.75 | | 71+85+44+2x+3x=360 | | 2(5-m)+2(m-3)=-(3m-4) |

Equations solver categories